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5)5) A movie:  A movie: ““PC in the real worldPC in the real world””
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1) Control of routers in a network.
2) Control of robots working together to construct a spacestation.
3) Control of flaplets on an aircraft wing.
4) Control of signals to human teams performing a joint task.
5) Control of variables in a parallel computer algorithm to

optimize a function.

Must be adaptive (i.e., not wed to a system model) to
i) Avoid brittleness;
ii) Scale well;
iii) Be fault-tolerant;
iv) Be widely applicable, with minimal (or even no) hand-tuning.

DISTRIBUTED ADAPTIVE CONTROLDISTRIBUTED ADAPTIVE CONTROL



The GOLDEN RULEThe GOLDEN RULE

Find a value of a variable x,
that optimizes a function

DO NOT:DO NOT:

Find a distribution over x,
that optimizes an expectation value

INSTEAD:INSTEAD:



ADVANTAGESADVANTAGES

1) Works for arbitrary (mixed) data types x -
P(x) is always a vector of real numbers, no
matter what data type x is.

2) So in particular, leverages techniques for the
optimization for Euclidean vectors - the most
powerful optimization techniques we have.
(“Gradient descent for symbolic variables.”)

3) P(x) provides sensitivity information (which
components of x are most important).



MORE ADVANTAGESMORE ADVANTAGES

4) Can be “seeded” with solutions of other
algorithms: peaks of initial P(x).

5) Can include Bayesian prior knowledge.
6) Automatically accomodate noisy, poorly

modeled problems.

•   Deep connections with statistical physics and
game theory. So

    -  Especially suited for distributed domains.
    -  Especially suited for very large problems.



1) A set of N agents:   Joint move x = (x1, x2, ..., xN)

2) Since they are distributed, their joint probability is a
product distribution:

• This definition of distributed agents is adopted from
  (normal form) noncooperative game theory.

WHAT IS DISTRIBUTED CONTROL?WHAT IS DISTRIBUTED CONTROL?

q(x)  =  ∏i qi(xi)



EXAMPLE: KSATEXAMPLE: KSAT

• x  =  {0, 1}N

• A set of many disjunctions, “clauses”, each 
involving K bits.
E.g., (x2 ∨ x6 ∨ ~x7) is a clause for K = 3

• Goal: Find a bit-string x that simultaneously 
satisfies all clauses. G(x) is  #violated clauses.

• For us, this goal becomes: find a q(x) = ∏i qi(xi) 
tightly centered about such an x.

The canonical computationally difficult problem

EXAMPLE: KSATEXAMPLE: KSAT
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1) We want to minimize a smooth function f(y ∈ ℜn)
subject to K equality constraints {hi(y) = 0}.

2) Example: Each hi(q) says a subset of q’s components
sum to 1, i.e., q is a probability distribution.

3) Define L({λi}, y)  ≡  f(y) + ∑i λihi(y)

4) L is the Lagrangian, and {λi} the Lagrange
parameters.

REVIEW OF CONSTRAINED OPTIMIZATIONREVIEW OF CONSTRAINED OPTIMIZATION



4) In general (finite gradients), the solution is a critical

point of L, i.e., it is the y value at the point

     max{λi}
 miny L({λi}, y)

5) To find the solution, solve

REVIEW OF CONSTRAINED OPTIMIZATION REVIEW OF CONSTRAINED OPTIMIZATION   - 2- 2
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∂L
∂y

=
∂L
∂λi

= 0



6) Add inequality constraints: together with equality

constraints they restrict y to a feasible region ⊂ ℜn.

7) In special cases (e.g., convex problems) can deal

with inequality constraints by adding Lagrange

parameter terms to L.

REVIEW OF CONSTRAINED OPTIMIZATION REVIEW OF CONSTRAINED OPTIMIZATION   - 3- 3



8) More general approach: add a barrier function φj to
L for each inequality constraint j:

L({λi}, {cj}, y)  ≡  f(y) + ∑i λihi(y) + ∑j cj φj(y)

9) Each φj is non-negative, and infinite if the j’th
inequality constraint is violated.

10) Each barrier parameter cj is non-negative, and gets
reduced to 0 via annealing.

REVIEW OF CONSTRAINED OPTIMIZATION REVIEW OF CONSTRAINED OPTIMIZATION   - 4- 4
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ITERATIVE DISTRIBUTED CONTROLITERATIVE DISTRIBUTED CONTROL

(P1) Find

   

such that

•  A constrained optimization problem with both

   equality and inequality constraints.

€ 

min{qi } dx G(x) qi (xi )
i
∏∫

€ 

∀i, dxi∫ qi (xi ) = 1, ∀xi , qi (xi ) ≥ 0



ITERATIVE DISTRIBUTED CONTROL - 2ITERATIVE DISTRIBUTED CONTROL - 2

(P2) Find the {qi} minimizing

   

such that

• A common barrier function is    φi(y) = y ln[y]

• If also all ci = T, then the objective function of (P2)
is the free energy,   FT(q)  =  Eq(G) - TS(q)

€ 

dx G(x) qi (xi )
i
∏∫ + dxi c(i,xi )φi (qi (xi ))∫

i
∑

€ 

∀i, dxi∫ qi (xi ) = 1



AUTOMATED ANNEALINGAUTOMATED ANNEALING

1) Ultimately want T → 0, starting at high T.

2) So want to minimize FT(q) over both T and q.

3) Can use gradient descent to do this.
4) ∂F/ ∂q components of gradient discussed below.

5) ∂F/ ∂T   =   ∂[Eq(G) - TS(q)]/ ∂T   =   -S(q).

6) So for fixed descent stepsize, ΔT is given by the
ratio of -S(q) to ∂F/ ∂q.

7) In particular, |ΔT| shrinks as S(q) does, i.e., as the
optimization progresses.



KULLBACK-LEIBLER DISTANCE AND FREE ENERGYKULLBACK-LEIBLER DISTANCE AND FREE ENERGY

1) The Kullback-Leibler (KL) distance between
probability distributions a(y) and b(y) is

KL(a || b)  =  -∫dy a(y) ln[b(y) / a(y)]

2) The Boltzmann distribution is   pβ(x) ∝  e-βG(x)

As β → ∞, pβ(x) gets peaked about argminxG(x)

3) Let T  =  1/β:  KL(q || pβ)  =  FT(q).

Minimizing FT(q) minimizes distance to the
Boltzmann distribution.



1) S(q)   =  -∑i [bi ln(bi) + (1 - bi) ln(1 - bi)]

where bi is qi(xi = TRUE)

2) Eq(G)  =  ∑clauses j, x q(x) Kj(x)

    =  ∑clauses j, x, i ∏i qi(xi) Kj(x)

where Kj(x) = 1 iff  x violates clause j

Our algorithm:   i) Find q minimizing  Eq(G) - TS(q);

        ii) Lower T and return to (i).

EXAMPLE: KSATEXAMPLE: KSAT
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1) Each i works to shrink FT(qi, q(i)) using only partial
information of the other agents’ distribution, q(i).

2) The qi(xi) component of ∇FT(q), restricted to the
space of allowed qi(xi), is

                   Eq(i)
(G | xi)   +  T ln[qi(xi)]

                  —
      (1/|Xi|) ∫dx′i [Eq(i)

(G | x′i)  + T ln[qi(x′i)]]

       where Eq(i)
(G | xi) is expected G given xi.

GRADIENT DESCENT OF FGRADIENT DESCENT OF FTT(q)(q)



3) Each agent i knows its values of ln[qi(xi)].

4) Say each agent i knows the Eq(i)
(G | xi).

Each qi knows how it should

change under gradient descent over FT(q)

5) Similarly the Hessian can readily be estimated (for
Newton’s method), etc.

GRADIENT DESCENTGRADIENT DESCENT  - 2  - 2



1) Solve for the q minimizing F(q):

where again, Eq(i)
(G | xi) is expected G given xi, when

other agents are distributed according to q(i)

2) When each agent i knows/estimates Eq(i)
(G | xi),

they can simultaneously jump to their optimal qi.

This is   Parallel Brouwer Updating

              BROUWER UPDATING  TO FIND qBROUWER UPDATING  TO FIND q

€ 

qi(xi) ∝ e
−βEq(i)

(G |xi)



1) Related to game theory’s “ficticious play”, and to
some reinforcement learning algorithms.

2) Can have slow convergence.

The problem is that each agent does what would
be optimal if the other agents didn’t change their
distributions. But they do change.

3) Parallel Brouwer can even worsen the Lagrangian
in any given update.

PARALLEL BROUWER UPDATINGPARALLEL BROUWER UPDATING



1) Instead, can cycle through which agent Brouwer
updates round robin.

2) Can cycle through which agent Brouwer updates
randomly.

3) Either can have slow convergence, when there are
many agents.

4) However with any kind of serial Brouwer, every
update by an agent improves the Lagrangian.

SERIAL BROUWER UPDATINGSERIAL BROUWER UPDATING



1) The Lagrangian gap of agent i is the drop in
FT(q) if only i updates. With Ni,q(G) defined as i’s
normalization constant, the gap equals

ln[Ni,q(G)]   +   E qi
(E(G | xi))   +   Si(qi)

2) The agent with the largest gap updates.

Mixed serial/parallel Brouwer updating  :

Optimal Stackelberg game, i.e., optimal
organization chart

GREEDY SERIAL BROUWERGREEDY SERIAL BROUWER



1) Evaluate Eq(i)
(G | xi)  - the expected number of

violated clauses if bit i is in state xi  -  for every i, xi

2) In gradient descent, decrease each qi(xi) by

 α[Eq(i)
(G | xi) + T ln[qi(xi)]  -  constj]

where α is the stepsize, and constj is an
easy-to-evaluate normalization constant.

3) We actually have a different T for each clause,
and adaptively update all of them.

EXAMPLE: KSATEXAMPLE: KSAT



1) In adaptive control, don’t know functional form
of G(x). So use Monte Carlo:

     -  Sample G(x) repeatedly according to q;

    -   Each i independently estimates Eq(i)
(G | xi)

       for all its moves xi.

So each qi can adaptively estimate its update

ADAPTIVE DISTRIBUTED CONTROLADAPTIVE DISTRIBUTED CONTROL



i) Top plot is Lagrangian value vs. iteration;
ii) Middle plot is average (under q) number of constraint

violations;
iii) Bottom plot is mode (under q) number of constraint

violations.

EXAMPLE: KSATEXAMPLE: KSAT



CONCLUSIONCONCLUSION

1)1) A distributed system is governed by aA distributed system is governed by a
        product distribution q, by definition.product distribution q, by definition.

2) So distributed adaptive control is adaptive 2) So distributed adaptive control is adaptive 
    search for the q that optimizes     search for the q that optimizes EEqq(G).(G).

3) That search can be done many ways,3) That search can be done many ways,
        e.g., gradient descent, with or withoute.g., gradient descent, with or without
    Monte Carlo sampling.    Monte Carlo sampling.




